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It is proved that the maximal operator of the two-parameter Riesz means with
parameters «, 8<1 is bounded from L,(R?) to L,(R?) (1<p<ow). The two-
dimensional classical Hardy spaces H,(R x R) are introduced and it is shown that
the maximal Riesz operator of a tempered distribution is also bounded from
H,(RxR) to L,(R?*) (max{l/(a+1), 1/(f+1)} <p< o) and is of weak type
(H¥(R xR), L (R?)) where the Hardy space H#(R xR) is defined by the hybrid
maximal function. As a consequence we obtain that the Riesz means of a function
fe H¥(RxR)> Llog L(R?) converge a.e. to the function in question. Moreover,
we prove that the Riesz means are uniformly bounded on the spaces H,(R x R)
whenever max{1/(x+1), 1/(f+1)} <p < co. Thus, in case f'€ H,(R xR), the Riesz
means converge to fin H,(R xR) norm. The same results are proved for the con-
jugate Riesz means and for two-parameter Fourier series, too.  © 2000 Academic Press

Key Words: Hardy spaces; rectangle p-atom; atomic decomposition; interpola-
tion; Riesz means.

1. INTRODUCTION

The Hardy-Lorentz spaces H, ,(RxR) of tempered distributions are
introduced with the L, ,(R?) Lorentz norms of the non-tangential maximal
function. Of course, H,(RxR)=H, ,(RxR) are the usual Hardy spaces
(0<p< ).

In this paper the Riesz means o“‘T:”,’JV’ % f of two-dimensional tempered dis-
tributions are considered where 0 <o, f < oo and 1<y, J < co. In the one-
dimensional case Butzer and Nessel [3] and Stein and Weiss [ 16] proved
for y =1, 2 that the Riesz means ¢ %" f of a function f € L, (R) converge a.e.
to fas T— oo. The author [19] verified the same result for all y>1 and,
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moreover, that the one-dimensional maximal Riesz operator o%7”:=
supr-o l0%”| is of weak type (1, 1), i.e

sup pMaZ 7 f>p)<CIflIli  (feLi(R)).

p>

Moreover, we proved in [19] that 6% ” is bounded from H,(R) to L,(R)
provided that 1/(a+1)<p<oo and O <a < 1.

In Weisz [ 17] we investigated the Fejér means of two-parameter Fourier
series, ie. if a=f=p=Jd=1, and proved that ok""':=sup, ,cn
loy "l is bounded from H, ,(TxT) to L, ,(T?) (3/4<p<o,0<
g <o) and is of weak type (H’IF(TXT), Ll(TZ)), Le.

sup pAa L " > p) < C U fl ey (fHHTXT)).

p>0

Moreover, the Fejér means o111 f converge a.e. to f as n, m — oo when-
ever fe H¥(TxT)> Llog L(Tz) (see Weisz [17] and Zygmund [21] for
Llog L(T?)).

In this paper we use another method and so we can sharpen and
generalize these results for the Riesz means of two-dimensional Fourier
transforms and Fourier series with o, >0 and 7,6 > 1.

First we modify the one-dimensional Riesz means by taking the absolute
value of the kernel functions and prove that the maximal operator of these
modified Riesz means is of weak type (L;(R), L;(R)) and is bonded from
L,(R) to L,(R) provided that 1 <p<oo. From this it follows that the
maximal operator ¢ %7 of the original one-dimensional Riesz means is also
of weak type (L;(R),L;(R)) and is bounded from L,(R) to L,(R)
(1 <p < o0). Note that this last result was also proved in Weisz [ 19] with
another method, as mentioned above. Using these two results about the
one-dimensional Riesz means we verify that the two-dimensional maximal
operator ot P70 =supy yaolo3h”? | (0<a, f<1) is bounded from

L,(R?) to L (R?) (1 <p < o0), which is also a new result.

Next we extend this result and investigate the boundedness of %7 on
Hardy spaces. We will show that 6% /7 is bounded from H, ,(R xR) to
L, ,(R?) whenever max{1/(a+1), 1/(f+1)} <p<o0,0<g<co and is of
weak type (H#(R xR), L;(R?)). We introduce the conjugate distributions
F@7, the conjugate Riesz means & *# "¢ and the conjugate maximal
operators GEDebrd (o j=0,1). We obtaln that the operator ¢ {> 7= #»°
is also of type (H, ,(RxR), L, ,(R?) for max{l/(a+1), l/ﬁ-{-l 1<
p<o0,0<g< o and of weak type (H¥(R xR), L,(R?)).

A usual density argument implies then that the Riesz means o7 Bro f
converge a.e. to fand the conjugate Riesz means 6 ;7> /7 f converge a.e.
to f&7 (i, j=0,1) as T, U— oo, provided thatfeH“(RxR) Note that
7@ is not necessarily in H#¥(R x R) whenever f'is.
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We will prove also that the operators o%%”° and 6% *#7° (T, Ue
R,) are uniformly bounded from H, (R xR) to H 5 q(RXR) if
max{l/ (a+1), 1/(f+1)} <p<o0,0<g<co. From this it follows that

ﬁy(’f—>fand LY “ﬁy‘sf—>f(’ M (i, j=0,1) in H, ,(RxR) norm as
T U— oo, wheneverfe . ¢(RxR) and max{1/(x+1), 1/ p+1)} <p<oo,
0<g<oo.

We extend these results also for «>1 and/or > 1.

We consider also the Riesz means of two-parameter Fourier series of
distributions on T? and prove all the results above in this context.

2. HARDY SPACES ON R xR AND CONJUGATE FUNCTIONS

For a set X # J let X? be its Cartesian product X x X taken with itself,
moreover, let R denote the real numbers, R | the positive real numbers and
let 4 be the Lebesgue measure. We also use the notation |I] for the
Lebesgue measure of the set 1. We briefly write LP(RZ) instead of the real
L,(R?, 1) space while the norm (or quasinorm) of this space is defined by

HfH = [z |f17 d2)V? (0<p < o0).
The distribution function of a Lebesgue-measurable function f'is defined

by
AQIfI>ph) =2 x: 1 f(x)>p})  (p=0).

The weak L,(R?) space L*(R?) (0<p<oo) consists of all measurable
functions f for which

”fHL*(RZ) = sup pA( {|f| >p} 1/P< 0

p>0

while we set L% (R?) =L (R?).

The spaces Lj(R2) are special cases of the more general Lorentz spaces
Lp,q(Rz). In their definition another concept is used. For a measurable
function f the non-increasing rearrangement is defined by

Sy :=inf {p: A{IfI>p})<t}.

The Lorentz space L, ,(R?) is defined as follows: for 0 <p <0, 0<g<

o dt 1/q
= ([ Ty e )
) o P
while for 0 <p < o0

1£ 1. oo := sup £21(2).

t>0
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Let
L, R>):=L, (R% 1) :={f:IIfl, , <o}
One can show the equalities
Lp,p(Rz):LP(RZ), Lp,oo(Rz):L;,"(Rz) (0<p< o)

(see, e.g., Bennett and Sharpley [ 1] or Bergh and Lofstrom [2]).

Let f be a tempered distribution on C*(R?) (briefly f'e.#'(R?)). The
Fourier transform of f is denoted by /. In special case, if f is an integrable
function then

R 1
fwy=s-| | flxyyemedvdy  (rucR),

where 1=,/ — 1.
For fe. %' (R?) and 1, u>0 let

F(.X, i, Zl) :(f*Pt ®Pu)(x9 y)a
where = denotes the convolution and

ct

P=aia

(xeR)

is the Poisson kernel. Moreover, let I":={(x,7):|x| <t} a cone whose
vertex is the origin. We denote by I(x) (xe€R) the translate of I" so that
its vertex is x. The non-tangential maximal function is defined by

F*(x, y):= sup [F(x', y's ¢, u)l.

(x's 1) e I(x), (¥, u) e I'(y)

For 0<p, q< o the Hardy-Lorentz space H, ,(RxR) consists of all
tempered distributions / for which F*e L, ,(R?) and set

1/ N, ey 2= IF* g

It is known that if fe H,(RxR) (0<p<oo) then f(x, y)=lim,,_,
F(x, y; t, u) in the sense of distributions (see Gundy and Stein [ 11], Chang
and Fefferman [4]).

Let us introduce the hybrid Hardy spaces. For fe L,(R?) and >0 let

1
G(x, y; 1) i=—= | (v, ) P,(x—v) do

St
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and

G*(x,y):= sup |G(X, ;1)

(x',t)eI(x)

We say that /e L,(R?) is in the hybrid Hardy—Lorentz space Hﬁ)q(R x R)
if

1/ 1tz ey = 1G ¥ g < 0.
The equivalences
Hp,q(RxR)~H1‘f’q(R><R)~Lp,q(Rz) (1<p<oo,0<g< o) (1)

were proved in Fefferman and Stein [ 7], Gundy and Stein [11], and Lin
[13]. Note that in case p=g¢ the usual definition of Hardy spaces
H, ,(RxR) = H{)(R xR) gnd H% (RxR) = H%(R xR) are obtained. .
The following interpolation result concerning Hardy—Lorentz spaces will
be used several times in this paper (see Lin [ 13] and also Weisz [18]).

THEOREM A. If a sublinear (resp. linear) operator V is bounded from
H, (RxR) to L, (R?) (resp. to H, (RxR)) and from L, (R?) to L, (R?)
(po<1<py< ) then it is also bounded from H, ,(RxR) to Lp!q(Rz)
(resp. to H, ,(RxR)) if po<p<p, and 0 <q< .

In this paper the constants C are absolute constants and the constants
C, (resp. C, ,) are depending only on p (resp. p and ¢) and may denote
different constants in different contexts.

One can prove similarly as in the discrete case (see Weisz [ 17]) that
Llog L(R*)c H¥(RxR) = H, ,(RxR), more exactly,

HfHHLOC(RxR)zsuP P;v(F*>P)<CHfHH¥(RxR) (fer(RXR)) (2)

p>0

and

1/l mxmy <C+ ClIf[log™ fll,  (feLlog L(R?),

where log™ u=1y,.1,logu.
For a tempered distribution f'e H,(R xR) (0 <p < o) the Hilbert trans-
forms or the conjugate distributions f&, 7@V and 751 are defined by

(fEO)~(t,u):=(—1signt) f(t,u)  (t,ueR)

(conjugate with respect to the first variable),

(FOY)~ (1, u):=(—1signu) f(t,u)  (t,ueR)
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(conjugate with respect to the second variable) and

(f D) (6, u) 1= (— sign () f(t.u)  (1,ueR)
(conjugate with respect to both variables), respectively. We use the
notation (9 :=f.

Gundy and Stein [ 10, 11] verified that if f € H,(RxR) (0 <p < 00) then
all conjugate distributions are also in H,(R xR) and

HfHH(RxR) Hf(l ])HH(RXR) (i, j=0a 1)' (3)

Furthermore (see also Chang and Fefferman [4], Frazier [9], Duren [5]),

1z ey ~ 1S 1L+ 1SS+ 1S+ 1SV, (4)

As is well known, if f'is an integrable function then

~ 1 —t 1 —t
f&wxw:pmffﬂﬁggﬂm:hmfj Sx=ty)
T Jr t 0 T Jex<r] t
f(o D(x, y) = f S(x, y_“)
and

;@w%w:pwéjjﬂﬁzil;@mw.

tu

Moreover, the conjugate function s f?, f© 1D and 7D do exist almost
everywhere, but they are not integrable in general. Similarly, if
fe H¥(RxR) then /Y and /™" are not necessarily in H¥ R x R).

3. THE TWO-DIMENSIONAL RIESZ MEANS OF
FOURIER TRANSFORMS

Suppose first that /'€ L,(R?) for some 1 <p<2. It is known that under
certain conditions

Py

flx, y)zzl—n JR JRf(t, u) e™e” dt du (x, yeR).
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This motivates the definition of the Dirichlet integral s, ,, f,

Seuf (X, ) Zf j Fv, w) e dodw (1, u>0).

The conjugate Dirichlet integrals are introduced by

§R0f(x, ) =5 j f (—1sign v) f(v, w) e*%e®” dv dw (¢, u>0),
—t

1 rt u n
5O D1(x, y) ::%J I (—1 sign w) f(v, w) e™**e™ dv dw (t,u>0)
—t Y—u

and

5D f(x, ) =5 f J (— sign (ow)) f(v, w) e dv dw (t, u>0),

respectively. We write s, ./ =: 5% It is easy to see that

sin fv sin uw

gg,i’uj)f(xs y) ::fR J‘Rf(i’j)(xi v, y— W) dl) dW (l’ ]: 0’ 1)

o w

For a, B, 7, 0 >0 the Riesz and conjugate Riesz means are defined by

~(i, j); % B, 7, 6 ‘_(xﬂyé T U B L Na—1 L y—1
GEPpmPrf(x, y) 1= T JO L 1 - d
HNB-1 s—1

where 7, U>0 and i, j=0, 1. Let 6%/ °f =62 =7 °f. Integrating by
parts we get that

1
o3 v = [ [ fle—t =) K50) K (u) di

27ZRR

where
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is the Riesz kernel. Similarly,

~(i, j); o 1 73, j .
BEE P ) =5 [ Tty ) K30 K () di d

We verified in [19] that the Riesz kernel K%? with 0 <a <1<y (T>0)
satisfies the conditions

| 1K371dr<c (5)
R
K37 (0)] S—=S (1R, 120) (6)
T Tnc|[|oc+1 ’
and
, C
(K37 (0 < s UER.1£0) (7)

where (K%7)" denotes the derivative of the Riesz kernel. Note that C may
depend on « and y.

The Riesz means are called typical means if y=0J =1, Bochner—Riesz
means if y=0 =2 and Fejér means if « = f =y =J =1. One can prove that
(cf. Butzer and Nessel [3]),

o 1 (T U 4% u
=y [0 17, (- T (-5
i, j=0,1.

We extend the definition of the Riesz means to tempered distributions as

NE
> f(t, u) e*e”™ dt du,

ol fi=f* (K3 x K% (T, U>0).

One can show that a"}’,/’;’/’ °fis well defined for all tempered distributions
feH,(RxR) (0<p<co) and for all functions feLp(Rz) (I1<p< o) (cf
Fefferman and Stein [7]). The extension of the conjugate Riesz means is

GERpmbrof = fEDx(Ku? x KES) (T, U>0).
The maximal and maximal conjugate Riesz operators are defined by

Gl fi= sup [GEGPTOA (6, j=0,1).
T,U>0

: : LBy, 0 4. ~(0,0); 0, B, 7,0
We use again the notation g% %7 0f =g 0=k rof
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4. THE BOUNDEDNESS OF THE MAXIMAL RIESZ OPERATOR
ON L,(R?) SPACES

In order to prove that ¢%”7° is bounded on the L,(R?) (1<p<o0)
spaces we consider first some one-parameter results. We modify the

one-dimensional Riesz means by taking the absolute value of the kernel
functions as follows. Let

[e?

1
)= J, SCx—w0 1K 570

and

w7 f1=sup 1571 |

T>0

Obviously,
loz 7 fI<zz”[fl  (T>0).

With the help of the following theorem that was proved by Schipp et al.
[15, pp. 262-263], we show that the operator 7% 7 is of weak type (1,1).

THEOREM B. Suppose that the sublinear operator V is bounded from
L_(R) to L (R) and

Jo., @< cisy (8)

for all fe L,(R) and intervals I which satisfy

supp f=l 9)

and

fdi=0, (10)
)

where rl (r € N) is the interval with the same center as I and with length r |I|.
Then the operator V is of weak type (1,1), ie.,

AVf 1> p) <§ T

for all fe L(R) and p>0.
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Now we can formulate the main theorem of this section.

THEOREM 1. Assume that 0<a<1<y. Then the operator 137 is

bounded from L (R) to L (R) and

C
(Tii:yf>p)<;|\f|\1

for all fe L{(R) and p>0.
Proof. 1Tt is easy to see that (5) implies

1757 Mo <Clfllee (€L (R)).

Let f'e L;(R) with support / which satisfy the conditions (9) and (10)
and suppose that 2K=1 || <2%¥ (KeZ). We can suppose that the center

of I is zero. In this case
[ _2K—2’ 2K—2] CIC [ _2K—1’ 2K—1]'
Obviously,

(i+1)2K

j 37 f(x)dx < ). J sup |t%7 f(x)| dx
R\4/

lij=1 “i2% T>2-K
o (i+1)2K

+ ) sup [t77 f(x)] dx

lij=1 “i2 T<2-K
=(4) +(B).

We can suppose that i > 1.
Inequality (6) implies

j Clr)]

I Trx|x_t|rx+l

50l = [ 0 18570l i <

By a simple calculation we get

1 C C2-KarD

|x_[|<x+l<(l'2K_2K—l)oc+l\ ioc+1

if xe[i2%, (i+1)2%) (i=1). Hence

|57 f(x)| < C2-Ker DT mj A0) dr
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and so

(A)< C Z 2K27K(a+l)2Koc
i=1

i=

1 © 1
D) \lf\|1=czlm I/l <CIfl (12)

To estimate (B) observe that by (9) and (10)

T"%yf(X)=L S(0) |KZ7 (x—1)| dl=Lf(l)(|K°%y(x—l)l —|KZ7(x)]) dt.
Thus
[T 7 f(x)] <L|f(l)| |K77(x—1) = K%7(x)] d.
Using Lagrange’s mean value theorem, (7) and (11) we conclude

|KZ7(x —1) = K77 (x)| = [(KZ7) (x =3 [1]
C|I| C2K2—K(oc+l)T1—oc

\Toc71|x_gv|ot+1\ ! ’

where & el and xe [2%, (i+ 1) 2%). Consequently,

, 1
(75 S < C2R T [ 0] di

and

& 1 S 1
(B)<C Y 2fa7fep=RKi=a s | fh = C ). sy IS < C SN (13)
. D) L D

i=1

Theorem 1 follows now from (12), (13), and Theorem B. ||

Note that for a=1 the proof is simpler because we do not need to
estimate (A).

The following result follows by interpolation.

THEOREM 2. If0<a<1<yand 1 <p< oo then

1% S, <G lfll,  (feLy(R)).

Since

o f<T IS
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we get

COROLLARY 1. Assume that 0 <a <1<y and 1 <p<oo. Then
o, Y C
Mol f>P)<;HfH1 (feLy(R); p>0)

and
l6%7fl,<C,Ifll,  (feLy,R)).

Note that Corollary 1 was proved also in Weisz [ 19] with another

method.
Now we return to the two-dimensional case and verify the L,(R?)

boundedness of g%/ 7°.

THEOREM 3. Assume that 0<a, f<1<y,0 and 1 <p < oo. Then
o272 fll, < Collfl,  (feL,(R?)).

Proof. Applying Theorem 2 and Corollary 1 we have

P
dx dy

f f Ftu) K7 (x — 1) K%y — u) dt du

g, e
R “R T,UeR,
<f, [, o

R“R UeR,

U <sup

R \TeR,

< CPJR f sup

R TeR,

P
DIty | dy

j Ft,u) K27(x — 1) dt

4
dx dy

J, f ) K52 — 1) di

< C,,L L |f(x, y)? dx dy

which proves the theorem. |

Note that using the fact that ¢%;” is bounded from H,(R) to L, (R) (see
Weisz [19]) we could prove (15) in a similar way.

Since the set of those functions f e L,(R?) whose Fourier transform has
a compact support is dense in LP(RZ) (I <p< o) (see Wiener [20]), the
usual density argument (see Marcinkievicz and Zygmund [ 14]) implies
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COROLLARY 2. Assume that 0<a, f<1<y,0 and 1 <p < oo. Then for
every f € L,(R?) we have

o3 f—f  ae and in L,(R?) norm as T, U— o0.

5. THE BOUNDEDNESS OF THE MAXIMAL RIESZ OPERATOR
ON HARDY SPACES

In this section we consider the boundedness of ¢%#”? on the spaces
H,(R xR) and extend Theorem 3 and Corollary 2.

A function a € L, is called a rectangle p-atom if there exists a rectangle
R <= R? such that

(i) suppacR
(i) lall,<|R['2=1P
(ii1)) for all x, yeR and all N<[2/p—3/2],

| atx, y)xVax=| a(x, y)y¥dy=o.
R R

For a rectangle R=1xJ let rR=rIxrJ (reN). An operator V which
maps the set of tempered distributions into the collection of measurable
functions, will be called p-quasi-local if there exist a constant C, >0 and
n >0 such that for every rectangle p-atom « supported on the rectangle R
and for every r >2 one has

j | Tal? d).< C,27".
R2A\2'R

Although H,(R xR) cannot be decomposed into rectangle p-atoms, in
the next theorem it is enough to take these atoms (see Weisz [17],
Fefferman [8]).

TaeorReM C. Suppose that the operator V is sublinear and p-quasi-local
for some 0 <p < 1. If V is bounded from L,(R?) to L,(R?) then

VI, < Cpllf 1erxry  (f € H(RxR)).

Now we are in a position to state our main result.
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THEOREM 4. Assume that 0 <a, f<1<y,d. Then

Ho-i;:ﬂ’}),5](‘“17,q< Cp,quHH,q(RxR) (fer,q(RXR)) (14)

Sor every max{1/(a«+1), 1/(f+1)} <p<oo and 0<q< 0. Especially, if
fe H¥R xR) then

" a ¢
A(G*’ﬁ’y"sf>,0)<;HfHH?(RxR) (p>0). (15)

Proof. First we will show that the operator ¢%# ¢ is p-quasi-local for
each max{1/(a+1), 1/(f+1)} <p<I1. To this end let @ be an arbitrary
rectangle p-atom with support R=17xJ and

2K 2K 2ty g2t (K,LeZ).
We can suppose again that
[ 252 2K"2]c ][ —2K-1 2K-1]
and
[—2L72 27 2]cJc[ 2871 281

To prove the p-quasi-locality of the operator ¢%# " we have to integrate
la% %72 al? over

R2\2'R = (R\2'7) x J | ] (R\2"T) x (R\J)
U ITx (R\277) [ (R\]) x (R\2"),

where r > 2 is an arbitrary integer.
First we integrate over (R\2"1) x J. We have

[ lextmo atx, y)ir dx dy
R\2'7 YJ

o (i+1)2K
< ) j j sup lo3%7%a(x, )| dx dy
|| =2r-2 vi2k J T<2-K UeR,
© (i+1)2K
+ Y [T s jeklalx, p)I7 dxdy
li|=2r—2 2k J T>2-K UeR,

=(4) +(B). (16)
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For x, yeR let

Ay o(x,y) = jx a(t, y) dt, Ao 1(x, p) :zjy a(x, u) du

— 00 — 00
and

y

A= [ ate y)ydidu.

By (iii)) of the definition of the rectangle atom we can show that
supp A, ;<R and A, ,; is zero at the limit points of R (k,[=0,1).
Moreover, using (ii) we can compute that

1 Aw <AL D207 (K 1=0, 1) (17)

Integrating by parts we can see that
73 a0 =| [ [ Aot K37 (500 Ky~ de
IJ

<[ [ Aot u) K52 (y —u) dul 1(K37) (x—1)| de.
I J

Apply (7) and (11) to obtain

C

o5, ) <[ |[ Ay ol u) KBy — ) du oy d
> P10 T |x_t|oc+

C2—K(oc+1)T1—<x

<TL UJAl,o(t, u) K%°(y —u) du| dt

provided that x e [i2%, (i+ 1) 2%) (i>1). Holder’s inequality implies

[ s oAty )7 dy

J T<2-K UeR,

Cp2—K(rx+l)p 2—K(1—oc)p

"=

= l-(oc+1)p

(I, 1, g

J UeR,

| Aol u) K2y —u) du
J

dy dt>P. (18)
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Using again Holder’s inequality, Corollary 1, and (17) we can conclude that

H sup JAlgo(t,u)K/,’;,a(y—u)du dy dt (19)
1 JUeR+ J
2 12
<|J|1/2j<j sup jAl,O(z,u)K@V(y—u)du dy) dt
I R UeR J

12
<cle[ ([ e nrdy)

12

<cin ([ [ 4ot v
I1°J

<ClIP=Ve -,

Consequently,
—2Kp

© 2
(4)<Cc, Y 2K

T l'(oc+1)p

2L7Lp22Kp7K2Lp7L (20)

1
—r((a+1)p—1)
<C z (oc+l)p<CP2 ? :

i=2r-2

Similarly, we get by (6) that

o5 % a(x, alt, u) K52y —u) du| |K%?(x —1)| dt

C2 K(oc+1)T—oc
Cat @
I

41

f alt, u) K%°(y —u) du
J

1

whenever x e [i2%, (i+ 1) 2%). Then

sup |05 2alx, )| dy
J T>2-K Uer,
C 27K(oc+1)p 2Kocp
<L FeEy || PU L US;JII{) a(t,u) K%(y —u) du dydt>
Applying an analogous inequality to (19) we can establish that
< K Z_KP L—ILpH»Kp—KnHLp—L
(B)<C, > 2 i(a+1)P2 PP RQEP
j=2r=2 (21)

1
C Z (a+1)p<CP2_r((a+l)P_l)'

=2r-2
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Inequalities (20) and (21) imply
j f 0% P73 a(x, p)|? dx dy < C,2~", (22)
R\2'T

Next we integrate over (R\2’1) x (R\J). Similarly to (16),

| teBeats, p)l7 dx dy
R\2'T R\J

@© © (i+1)2K ((j+1)2L
<y > ] sup o3/ %alx, y)|? dx dy
lij=2r-2 |jj=1"2% 2t T<2-K y<2-L
o o0 G+1)2K (j+1)2F
+ ¥ [ sup 0%/ %alx, )| ? dx dy
lij=2r-2 |j|=1"2% 2t T<2-K Us2-L
© © (i+1)2K ~(j+1)2L bins
+ Y Yo sup o35 %alx, )|? dx dy
lil=2r=2 |jl=1"12 J2 T>2-K u<2-L
«© 0 (i+1)2K (j+1)2L
+ > Y[ ] sup  |o%h alx, y)|” dx dy
lij=2r-2 |j1=1"2% 2k T>2-K Us2-L

=(C)+ (D) +(E)+ (F).
Integrating by parts and using (7), (11), and (17) we conclude that

03Pl ) =|| | Ava(u)(K7Y (e 0K (y—u) didu] - (23)

C C
<
\J; J‘J|A1,1(t> u)' Ta—1 |x_t|oc+l Us—1 |y_u|/3+1

C2 K(oc+1)2 L(ﬁ’+l)T1—¢xU1 B

< T | [ 1) dedu

dt du

2 Ke+y L+ l—ap1—§ 12 12
< la+ljﬂ+l |I| |J| ”AI,IHZ

C2—Koc+K—K/p2—Lﬂ+L—L/pT1 —ocUl —B

= o+ 1:8+1 ’

o
where x e [i2%, (i4+1) 2%), ye[j2*, (j+1) 2*). Henceforth
S S 27"+ 1 1
K+L —r(« _
C)<Cp z Z 2K+ W<Cp2 ((a+Dp—1) (24)

i=2r-2 j=1
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We get in the same way as in (23) that

737 a0 =[] Aot RS (v ) KBy =) de

C27K(:x+1)27L(/7’+1)T170cU7ﬁ
< SR [ [ 140t w) dr ae
T Iy

C27Koc+K7K/p27Lﬁ7L/pT17ocU7/3

= l'oc+ ljﬂ+1
in case xe [i2%, (i+1)2%), ye[j2%, (j+1)2%). Hence the inequality (24)
is also true for (D). The estimation of (E) is similar.
To estimate (F) let us observe that

lo% 57 %a(x, y)| = J f a(t, u) K% (x —t) K%°(y —u) dt du
IYJ

C27K(oc+1)27L(ﬂ+1)T7uU7ﬂ

< PRy LLla(l, u)| dt du
C2—sz—K/p2—Lﬁ—L/pT—aU—ﬁ’

= l-oc+ljﬁ+l

provided that xe[i2%, (i +1)2%), ye[j2%, (j+1)2%). This implies that
(F) satisfies also (24).
Consequently,

j [ 0% P73 a(x, y)|? dx dy < C,2~", (25)
R\2'7 'R\ J

The integrations over Ix (R\2"J) and over (R\J) x (R\2"J) are similar.
Hence (22) and (25) imply the p-quasi-locality of %% 7°.

Inequality (14) for max{1/(a+1), 1/(f+1)} <p=g<1 follows now
from Theorems 3 and C. Applying Theorems A and 3 we obtain (14).

Let us point out this result for p=1 and ¢ = 0. If f € H¥(R x R) then (2)
implies

Hff‘;’ﬁ’y”sf\ll,oo =sup P)L(O'i’p’y’(sf>,0)< C HfHHl’OO(RxR)gc ”f“Hl”(RxR)
p>0

which shows (15). The proof of the theorem is complete. ||

Remark. The proof of Theorem 4 is simpler if « = f =1 because we do
not need the estimations of (B), (D), (E), and (F).

We can state the same for the maximal conjugate Riesz operators.
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THEOREM 5. Assume that 0<a, f<1<y,0 and i, j=0, 1. Then

H&(*i,j);a!ﬁ’y’af”p,qgCp,quHHp’q(RxR) fEH RXR))

Sor every max{1/(a+1), 1/(f+1)} <p<oo and 0 <q<oo. Especially, if
fe H¥R xR) then

~(i, /); o - ¢ .
MGE D ’ﬁ’y"sf>p)<; I/ % ) (p>0).

Proof. By Theorem 4 for p =g and (3) we obtain

|6 %572 f, = 0% P72 TN, < Col T4l iy = Coll f Ly

for every max{1/(a«+1), 1/(f+1)} <p < oo. Now Theorem 5 follows from
Theorem A and from (2). |

Since the set of those functions f € L,(R?) whose Fourier transform has
a compact support is dense in H%(R xR), the weak type inequalities of
Theorems 4 and 5 imply

COROLLARY 3. Assume that 0<a, f<1<y,0 and i, j=0,1. If fe
H¥RxR) (> Llog L(R?)) then

GRpyebrof S F0D qe as T, U— oo.
Note that 7 is not necessarily in H#%(R x R) whenever f is.

Now we consider the norm convergence of ¢%%”°f and extend
Corollary 2.

THEOREM 6. Assume that 0<a, f<1<y,0,i, j=0,1 and T, UeR,
Then

H&(Tizjg;a’ﬂ’ y’a.f”HR q(RxR) < Cp,q HfHHp’q(RxR) (fer, q(R X R))

Sor every max{1/(a+1), 1/(f+1) }<p<oo and 0 < g < oo.

Proof. Since (a5 °f )7 = b7 we have by Theorem 5 that
12 2 fT N, < Coll flmxry  (f€Hy(RXR))
for all 7, Ue R, and i, j=0, 1. The inequality

|‘0§:,ﬁ0y’5f|‘Hp(RxR)< Cp”fHHp(RxR) (fe Hp(RX R); T, UeR )
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follows from (4). Hence, for i, j=0, 1,
H&(Tijjz'}; = b y’afHHp(RxR) < Cp HfHHp(RxR) (fe Hp(R xR); T, UeN).

Now Theorem 6 follows from Theorem A. |

COROLLARY 4. Assume that O0<a, f<1<y,0 and i, j=0,1. If
max{1/(a+1), 1/(f+1)} <p<o0, 0<g< o and fe H, ,(RxR) then

Gl brof Fu0 in H, (RxR) norm as T, U— o0.

We suspect that Theorems 4, 5, and 6 for p <max{1/(a«+1), 1/(f+1)}
are not true though we could not find any counterexample.

We will extend the results to « > 1 and £ > 1. By integrating by parts we
proved in [19] that

hh+1)y T s\\ 1/ s\ !
ottt = T(1=(3) ) () et nas

where /4 > 0. In other words
Go;:ﬁ,y,éf< CO.:‘/\ 1,B A l,y,éf

which shows that Theorems 3-5 hold also for a>1 and/or f>1. The
extension of Theorem 6 can be proved in the same way.

COROLLARY 5. If O<a,f<o0 and 1<y, d then all inequalities of
Theorems 3—6 and all convergence results of Corollaries 2—4 hold for every
max{l/(1+aAl), 1/ (1+f A1)} <p<ooand 0<q< 0.

In the next sections we verify the results above in the periodic case, i.e.,
for the Riesz summability of two-parameter Fourier series.

6. HARDY SPACES ON THE BIDISC AND
CONJUGATE FUNCTIONS

The Lorentz spaces on the measure space (T?:=[—n, )% 1) are
denoted by L, ,(T?). Let f be a distribution on C*(T?) (briefly /'€ Z'(T?)).
The (n, m)th Fourier coefficient is defined by f(n, m) :=f(e™" e~"). In
special case, if f'is an integrable function then

\ 1

f(n,m) :W JT Lf(x, y) e "™e ™" dx dy.
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For simplicity, we assume that, for a distribution fe 2'(T?), we have
f(n,0)=f(0,n)=0 (neN).
For fe Z'(T?) and z, :=re™, z,:=se” (0<r,s<1) let

u(Zh 22) = u(rezx’ Sely) = (f*Pr ®Ps)(xa y)a
where

o 1— 2
P(x):= ) g — 27 (xeT)

2
Pt 1 +r*—2rcosx

is the periodic Poisson kernel.
The non-tangential maximal function is defined by

u*(x, y):= sup sup |u(zy,z,)l,
z1€2(x) z,€Q(y)

where Q(x) is the usual Stolz domain (see, e.g., Kashin and Saakyan [12]
or Weisz [17]).

For 0<p, g<oo the Hardy-Lorentz space H, (T xT) consists of all
distributions f for which u*e L, ,(T?) and set

HfHHp’q(TxT) = ”u*”p,q‘

For fe L(T?) and z:=re™ (0<r<1) let

1
oz, y)=elre®, y) = [ [l 3) Po(x—0) dr

and

v(x, y):= sup |v(z, y)|.

zeQ(x)

We say that f'e L,(T?) is in the hybrid Hardy—Lorentz space H”f, AT xT)if

HfHH;q(TxT) = v, 4 < 0.

For a distribution

f’V z f(k, l) ptex +ily

k,leZ
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the conjugate distributions are defined by

FEO~ Y (—rsign k) f(k, 1) e+,

k,leZ

JOV~ ¥ (—usignl) flk, 1) e* 4

k,leZ
and
JED~ Y (—sign (kD) f(k, 1) ">+,
k,leZ

respectively. We use again the notation f©®:=7 If f is an integrable
function then

JEOx, y)=p.v. J;(ta; zt/g i
F00 . )=y, L[ L5 2=0)
SOV (x, y)=pw. 7 dr 2 tan(u/2) o

and

1oL T et
p-v- 3 11 4 tan(/2) tan(u/2)

FED(x, y) = dt du.

We remark that the analogues of (1)—(4) and the analogues of Theorem
A, B and C are true in this case (cf. Weisz [ 17] and the references there).

7. RIESZ SUMMABILITY OF TWO-PARAMETER FOURIER SERIES

The Riesz means of a distribution f are defined by

g% B " Z
o= 38 (=] ) (-l

= f* (k%7 XK’fn’ °)(x, )

5) Fk, 1y eets

where
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is the periodic Riesz kernel. Similarly, we introduce the conjugate Riesz
means of a distribution f by
7\ * [ |19\#
J (-f])
m+1

(—1 sign k) fk, 1) e’

k
n+1

sperripeyy = 3% (1
k=

=T (7 )0, ),
ON'(O’I);“’B’Yfo ): i i k |7\* L / 5>ﬂ
= = Cn+l m+1

(—1sign 1) f(k, 1) e*>e™

= JOV « (7 xacls ), )

7\ & /
> <1_’m+1
(— sign (k1)) f(k, [) e*=e

= OV ez w2, ),

and

k
n+1

n m o\ B
~(11)zxﬂy6fxy Z Z <1_ >

—n l=—m

respectively. The maximal and maximal conjugate Riesz operators are
defined by

BU MBI sup (50 R

n,meN

00 o 3 LB 7,0 £
where G0l rof:—gelrof and we define again o3/ 70f:=
0-(00)06/7’3’5](

We proved in [19] that

(x)= 21 Y K%7,(x+2kn),
k=—o0

where neN, a, y>0 and xeT (cf. also Butzer and Nessel [ 3]). From this
it follows that the analogues to (5)-(7) hold, namely, for ne N and
O<a<l<y,

C
[ praise, b ol< oy (xeTx#0)
T noc |x|<x
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and

C

[(k7?) (NS5 o77 (xeT, x#0).
n | x|

Using these estimates we can prove the following results in the same way
as in Sections 4 and 5, so we omit the proofs.

THEOREM 7. Assume that 0 <a, f<1<y,0 and 1 <p < 0. Then
lo% 272 fll, < Cplfll,  (feL,(T?).

COROLLARY 6. Assume that 0 <a, f<1<y,0 and 1 <p < oo. Then for
every f € L,(T?) we have

onh?°f—f ae andin L,(T?) norm as  n,m— oo.
THEOREM 8. Assume that 0 <o, f<1<y,0 and i, j=0, 1. Then

1657820 f1, < C g |l ey (fEH, (TXT))

Sor every max{1/(a+1), 1/(f+1)} <p<oo and 0 <q<oo. Especially, if
feH¥TxT) then

~(i, j); & ¢
WEE 1o brofs p) <; [WAIP7EE s (p>0).

Note that a very special case of Theorem 8, ie., if i=;=0, a=f=
y=0=1 was proved in Weisz [17] only for 3/4 <p < o0.

COROLLARY 7. Assume that 0<o, f<1<y,0 and i, j=0,1. If fe
H¥TxT) (> Llog L(T?)) then

oD brof L FED  ge  as n,m— .
THEOREM 9. Assume that 0 <o, f<1<9,0, i, j=0,1 and n,meN.
Then

|\55,’;’,53;“”3’ & 6f”Hp’q(T><T) < Cp,quHHp,q(TxT) (fGH (TxT))

Sor every max{1/(a«+1), 1/(f+1)} <p<oo and 0 <q< 0.
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COROLLARY 8. Assume that 0<o, f<1<9,0 and i, j=0,1. If

max{1/(a+1), 1/(f+1)} <p<oo, 0<g< oo and feH, (TxT) then

GUh R By ofy i) in H, (TxT)norm as n,m- co.

n,m
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